分布式消息队列RocketMQ

第 1 章 RocketMQ概述

一、MQ概述

1 、MQ简介

MQ,Message Queue,是一种提供消息队列服务的中间件,也称为消息中间件,是一套提供了消息生产、存储、消费全过程API的软件系统。消息即数据 。一般消息的体量不会很大。


2 、MQ用途

从网上可以查看到很多的关于MQ用途的叙述,但总结起来其实就以下三点。

  • 限流削峰
    MQ可以将系统的超量请求暂存其中,以便系统后期可以慢慢进行处理,从而避免了请求的丢失或系统被压垮。
    878a9feb249f4db7bd02f5def3fbdc51

  • 异步解耦
    上游系统对下游系统的调用若为同步调用,则会大大降低系统的吞吐量与并发度,且系统耦合度太高。而异步调用则会解决这些问题。所以两层之间若要实现由同步到异步的转化,一般性做法就是,在这两层间添加一个MQ层。
    a06b700b638048629e48dac81c9972ed

  • 数据收集
    分布式系统会产生海量级数据流,如:业务日志、监控数据、用户行为等。针对这些数据流进行实时或批量采集汇总,然后对这些数据流进行大数据分析,这是当前互联网平台的必备技术。通过MQ完成此类数据收集是最好的选择。


3 、常见MQ产品

  • ActiveMQ

ActiveMQ是使用Java语言开发一款MQ产品。早期很多公司与项目中都在使用。但现在的社区活跃度已
经很低。现在的项目中已经很少使用了。

  • RabbitMQ

RabbitMQ是使用ErLang语言开发的一款MQ产品。其吞吐量较Kafka与RocketMQ要低,且由于其不是
Java语言开发,所以公司内部对其实现定制化开发难度较大。

  • Kafka

Kafka是使用Scala/Java语言开发的一款MQ产品。其最大的特点就是高吞吐率,常用于大数据领域的实
时计算、日志采集等场景。其没有遵循任何常见的MQ协议,而是使用自研协议。对于Spring Cloud
Netçix,其仅支持RabbitMQ与Kafka。

  • RocketMQ

RocketMQ是使用Java语言开发的一款MQ产品。经过数年阿里双 11 的考验,性能与稳定性非常高。其
没有遵循任何常见的MQ协议,而是使用自研协议。对于Spring Cloud Alibaba,其支持RabbitMQ、
Kafka,但提倡使用RocketMQ


4 、MQ常见协议

一般情况下MQ的实现是要遵循一些常规性协议的。常见的协议如下:

以下协议,RocketMQ都不支持

  • JMS

JMS,Java Messaging Service(Java消息服务)。是Java平台上有关MOM(Message Oriented
Middleware,面向消息的中间件 PO/OO/AO)的技术规范,它便于消息系统中的Java应用程序进行消
息交换,并且通过提供标准的产生、发送、接收消息的接口,简化企业应用的开发。ActiveMQ是该协
议的典型实现。

  • STOMP

STOMP,Streaming Text Orientated Message Protocol(面向流文本的消息协议),是一种MOM设计
的简单文本协议。STOMP提供一个可互操作的连接格式,允许客户端与任意STOMP消息代理
(Broker)进行交互。ActiveMQ是该协议的典型实现,RabbitMQ通过插件可以支持该协议。

  • AMQP

AMQP,Advanced Message Queuing Protocol(高级消息队列协议),一个提供统一消息服务的应用
层标准,是应用层协议的一个开放标准,是一种MOM设计。基于此协议的客户端与消息中间件可传递
消息,并不受客户端/中间件不同产品,不同开发语言等条件的限制。 RabbitMQ是该协议的典型实
现。

  • MQTT

MQTT,Message Queuing Telemetry Transport(消息队列遥测传输),是IBM开发的一个即时通讯协
议,是一种二进制协议,主要用于服务器和低功耗IoT(物联网)设备间的通信。该协议支持所有平
台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器的通信协议。 RabbitMQ通
过插件可以支持该协议。


二、RocketMQ概述

1 、RocketMQ简介

RocketMQ是一个统一消息引擎、轻量级数据处理平台。

RocketMQ是一款阿里巴巴开源的消息中间件。 2016 年 11 月 28 日,阿里巴巴向 Apache 软件基金会捐赠
RocketMQ,成为 Apache 孵化项目。 2017 年 9 月 25 日,Apache 宣布 RocketMQ孵化成为 Apache 顶
级项目(TLP ),成为国内首个互联网中间件在 Apache 上的顶级项目。
官网地址:http://rocketmq.apache.org


2 、RocketMQ发展历程

2007 年,阿里开始五彩石项目,Notify作为项目中交易核心消息流转系统,应运而生。Notify系统是RocketMQ的雏形。
2010 年,B2B大规模使用ActiveMQ作为阿里的消息内核。阿里急需一个具有海量堆积能力的消息系统。
2011 年初,Kafka开源。淘宝中间件团队在对Kafka进行了深入研究后,开发了一款新的MQ,MetaQ。
2012 年,MetaQ发展到了v3.0版本,在它基础上进行了进一步的抽象,形成了RocketMQ,然后就将其进行了开源。
2015 年,阿里在RocketMQ的基础上,又推出了一款专门针对阿里云上用户的消息系统Aliware MQ。
2016 年双十一,RocketMQ承载了万亿级消息的流转,跨越了一个新的里程碑。 11 月 28 日,阿里巴巴向 Apache 软件基金会捐赠 RocketMQ,成为 Apache 孵化项目。
2017 年 9 月 25 日,Apache 宣布 RocketMQ孵化成为 Apache 顶级项目(TLP ),成为国内首个互联网中间件在 Apache 上的顶级项目。


第 2 章 RocketMQ的安装与启动

一、基本概念

1 消息(Message)

消息是指,消息系统所传输信息的物理载体,生产和消费数据的最小单位,每条消息必须属于一个主题。

2 主题(Topic)

分布式消息队列RocketMQ.png

Topic表示一类消息的集合,每个主题包含若干条消息,每条消息只能属于一个主题,是RocketMQ进行
消息订阅的基本单位。 topic:message 1:n message:topic 1:1

一个生产者可以同时发送多种Topic的消息;而一个消费者只对某种特定的Topic感兴趣,即只可以订阅
和消费一种Topic的消息。 producer:topic 1:n consumer:topic 1:1


3 标签(Tag)

为消息设置的标签,用于同一主题下区分不同类型的消息。来自同一业务单元的消息,可以根据不同业务目的在同一主题下设置不同标签。标签能够有效地保持代码的清晰度和连贯性,并优化RocketMQ提供的查询系统。消费者可以根据Tag实现对不同子主题的不同消费逻辑,实现更好的扩展性。Topic是消息的一级分类,Tag是消息的二级分类。

Topic:货物
tag=上海
tag=江苏
tag=浙江

——- 消费者 —–

topic=货物 tag = 上海
topic=货物 tag = 上海|浙江
topic=货物 tag = *


4 队列(Queue)

存储消息的物理实体。一个Topic中可以包含多个Queue,每个Queue中存放的就是该Topic的消息。一
个Topic的Queue也被称为一个Topic中消息的分区(Partition)。

分区=queue
一个Topic的Queue中的消息只能被一个消费者组中的一个消费者消费。
一个Queue中的消息不允许同一个消费者组中的多个消费者同时消费。

9d460d326da3479bb9efd5ee3c374668.png


在学习参考其它相关资料时,还会看到一个概念:分片(Sharding)。分片不同于分区。在RocketMQ
中,分片指的是存放相应Topic的Broker。每个分片中会创建出相应数量的分区,即Queue,每个
Queue的大小都是相同的
分布式消息队列RocketMQ1.png


5 消息标识(MessageId/Key)

有可能重复
RocketMQ中每个消息拥有唯一的MessageId,且可以携带具有业务标识的Key,以方便对消息的查询。

不过需要注意的是,MessageId有两个:在生产者send()消息时会自动生成一个MessageId(msgId),
当消息到达Broker后,Broker也会自动生成一个MessageId(offsetMsgId)。msgId、offsetMsgId与key都
称为消息标识。

  • msgId:由producer端生成,其生成规则为:
    • producerIp + 进程pid + MessageClientIDSetter类的ClassLoader的hashCode +当前时间 + AutomicInteger自增计数器
  • offsetMsgId:由broker端生成,其生成规则为:
    • brokerIp + 物理分区的offset(Queue中的偏移量)
  • key:由用户指定的业务相关的唯一标识

二、系统架构

分布式消息队列RocketMQ2.png

RocketMQ架构上主要分为四部分构成

1 Producer

消息生产者,负责生产消息。Producer通过MQ的负载均衡模块选择相应的Broker集群队列进行消息投
递,投递的过程支持快速失败并且低延迟。

例如,业务系统产生的日志写入到MQ的过程,就是消息生产的过程
再如,电商平台中用户提交的秒杀请求写入到MQ的过程,就是消息生产的过程

RocketMQ中的消息生产者都是以生产者组(Producer Group)的形式出现的。生产者组是同一类生产
者的集合,这类Producer发送相同Topic类型的消息。一个生产者组可以同时发送多个主题的消息。

2 Consumer

消息消费者,负责消费消息。一个消息消费者会从Broker服务器中获取到消息,并对消息进行相关业务处理。

例如,QoS系统从MQ中读取日志,并对日志进行解析处理的过程就是消息消费的过程。
再如,电商平台的业务系统从MQ中读取到秒杀请求,并对请求进行处理的过程就是消息消费的过程。

RocketMQ中的消息消费者都是以消费者组(Consumer Group)的形式出现的。消费者组是同一类消费者的集合,这类Consumer消费的是同一个Topic类型的消息。消费者组使得在消息消费方面,实现负载均衡(将一个Topic中的不同的Queue平均分配给同一个Consumer Group的不同的Consumer,注意,并不是将消息负载均衡)和容错(一个Consmer挂了,该Consumer Group中的其它Consumer可以接着消费原Consumer消费的Queue)的目标变得非常容易。
分布式消息队列RocketMQ3.png

一个消费者可以消费多个queue,一个queue只能被一个消费者消费

消费者组中Consumer的数量应该小于等于订阅Topic的Queue数量。如果超出Queue数量,则多出的Consumer将不能消费消息。


分布式消息队列RocketMQ4.png

不过,一个Topic类型的消息可以被多个消费者组同时消费。

注意:
1 )消费者组只能消费一个Topic的消息,不能同时消费多个Topic消息
2 )一个消费者组中的消费者必须订阅完全相同的Topic


3 Name Server

  • 功能介绍

NameServer是一个Broker与Topic路由的注册中心,支持Broker的动态注册与发现。RocketMQ的思想来自于Kafka,而Kafka是依赖了Zookeeper的。

所以,在RocketMQ的早期版本,即在MetaQv1.0与v2.0版本中,也是依赖于Zookeeper的。从MetaQv3.0,即RocketMQ开始去掉了Zookeeper依赖,使用了自己的NameServer。

主要包括两个功能:

  • Broker管理:
    • 接受Broker集群的注册信息并且保存下来作为路由信息的基本数据;提供心跳检测机制,检查Broker是否还存活。
    • 路由信息管理:每个NameServer中都保存着Broker集群的整个路由信息和用于客户端查询的队列信息。Producer和Conumser通过NameServer可以获取整个Broker集群的路由信息,从而进行消息的投递和消费。

  • 路由注册

NameServer通常也是以集群的方式部署,不过,NameServer是无状态的,即NameServer集群中的各个节点间是无差异的,各节点间相互不进行信息通讯。那各节点中的数据是如何进行数据同步的呢?

在Broker节点启动时,轮询NameServer列表,与每个NameServer节点建立长连接,发起注册请求。在NameServer内部维护着一个Broker列表,用来动态存储Broker的信息。NameServer集群之间没有数据通讯

注意,这是与其它像zk、Eureka、Nacos等注册中心不同的地方。
这种NameServer的无状态方式,有什么优缺点:
优点:NameServer集群搭建简单扩容简单
缺点:对于Broker,必须明确指出所有NameServer地址。否则未指出的将不会去注册。也正因为如此,NameServer并不能随便扩容。
因为,若Broker不重新配置,新增的NameServer对于Broker来说是不可见的,其不会向这个NameServer进行注册。

Broker节点为了证明自己是活着的,为了维护与NameServer间的长连接,会将最新的信息以心跳包的方式上报给NameServer,每 30 秒发送一次心跳。心跳包中包含 BrokerId、Broker地址(IP+Port)Broker名称、Broker所属集群名称等等。NameServer在接收到心跳包后,会更新心跳时间戳,记录这个Broker的最新存活时间。

NameServer,10s扫描一次Broker表;
Broker,30s发送一次心跳
Broker,120s没收到一个Broker心跳就直接干掉这个Broker


  • 路由剔除
    由于Broker关机、宕机或网络抖动等原因,NameServer没有收到Broker的心跳,NameServer可能会将
    其从Broker列表中剔除。NameServer中有一个定时任务,每隔 10 秒就会扫描一次Broker表,查看每一个Broker的最新心跳时间戳距离当前时间是否超过 120 秒,如果超过,则会判定Broker失效,然后将其从Broker列表中剔除。

扩展:对于RocketMQ日常运维工作,例如Broker升级,需要停掉Broker的工作。OP需要怎么做?
OP需要将Broker的读写权限禁掉。一旦client(Consumer或Producer)向broker发送请求,都会收到broker的NO_P
ERMISSION响应,然后client会进行对其它Broker的重试。当OP观察到这个Broker没有流量后,再关闭它,实现Broker从NameServer的移除。
OP:运维工程师
SRE:Site Reliability Engineer,现场可靠性工程师


  • 路由发现

RocketMQ的路由发现采用的是Pull模型 当Topic路由信息出现变化时,NameServer不会主动推送给客户端,而是客户端定时拉取主题最新的路由。默认客户端每 30 秒会拉取一次最新的路由。

扩展:
1 ) Push模型:
推送模型。其实时性较好,是一个“发布-订阅”模型,需要维护一个长连接。而长连接的维护是需要资源成本的。该模型适合于的场景:实时性要求较高Client数量不多,Server数据变化较频繁
2 )Pull模型:
拉取模型。存在的问题是,实时性较差
3 )Long Polling模型:
长轮询模型。其是对Push与Pull模型的整合,充分利用了这两种模型的优势,屏蔽了它们的劣势。客户端请求服务端消息,如果没有,保存30s的长连接,期间有消息就返回;30s后就关闭长连接,不断重复该过程)


  • 客户端NameServer选择策略

这里的客户端指的是Producer与Consumer

客户端在配置时必须要写上NameServer集群的地址,那么客户端到底连接的是哪个NameServer节点呢?

客户端首先会生产一个随机数,然后再与NameServer节点数量取模,此时得到的就是所要连接的
节点索引,然后就会进行连接。(随机获取,建立连接)

如果连接失败,则会采用round-robin策略,逐个尝试着去连接其它节点。

首先采用的是随机策略进行的选择,失败后采用的是轮询策略

扩展:Zookeeper Client是如何选择Zookeeper Server的?
简单来说就是,经过两次shuffle(打散zkserver列表),然后选择第一台Zookeeper Server。
详细说就是,将配置文件中的zk server地址进行第一次shuffle,然后随机选择一个。这个选择出的一般都是一个hostname。然后获取到该hostname对应的所有ip,再对这些ip进行第二次shuffle,从shuffle过的结果中取第一个server地址进行连接。


4 Broker

  • 功能介绍
    Broker充当着消息中转角色,负责存储消息、转发消息。Broker在RocketMQ系统中负责接收并存储从生产者发送来的消息,同时为消费者的拉取请求作准备。Broker同时也存储着消息相关的元数据,包括消费者组消费进度偏移offset、主题、队列等。

Kafka 0.8版本之后,offset是存放在Broker中的,之前版本是存放在Zookeeper中的。


  • 模块构成

下图为Broker Server的功能模块示意图。

分布式消息队列RocketMQ5.png

Remoting Module:整个Broker的实体,负责处理来自clients端的请求。而这个Broker实体则由以下模块构成。
Client Manager:客户端管理器。负责接收、解析客户端(Producer/Consumer)请求,管理客户端。例如,维护Consumer的Topic订阅信息
Store Service:存储服务。提供方便简单的API接口,处理消息存储到物理硬盘和消息查询功能。
HA Service:高可用服务,提供Master Broker 和 Slave Broker之间的数据同步功能。
Index Service:索引服务。根据特定的Message key,对投递到Broker的消息进行索引服务,同时也提供根据Message Key对消息进行快速查询的功能。


  • 集群部署
    为了增强Broker性能与吞吐量,Broker一般都是以集群形式出现的。各集群节点中可能存放着相同Topic的不同Queue。不过,这里有个问题,如果某Broker节点宕机,如何保证数据不丢失呢?其解决方案是,将每个Broker集群节点进行横向扩展,即将Broker节点再建为一个HA集群,解决单点问题。

Broker节点集群是一个主从集群,即集群中具有Master与Slave两种角色。Master负责处理读写操作请求,Slave负责对Master中的数据进行备份(平常操作都是操作Master)。当Master挂掉了,Slave则会自动切换为Master去工作。所以这个Broker集群是主备集群。一个Master可以包含多个Slave,但一个Slave只能隶属于一个Master。Master与Slave 的对应关系是通过指定相同的BrokerName、不同的BrokerId来确定的。BrokerId为0表示Master,非0表示Slave。每个Broker与NameServer集群中的所有节点建立长连接,定时注册Topic信息到所有NameServer。
分布式消息队列RocketMQ6.png


5 工作流程

  • 具体流程

1)启动NameServer,NameServer启动后开始监听端口,等待Broker、Producer、Consumer连接。

2)启动Broker时,Broker会与所有的NameServer建立并保持长连接,然后每30秒向NameServer定时发送心跳包。(注册)

3)发送消息前,可以先创建Topic,创建Topic时需要指定该Topic要存储在哪些Broker上,当然,在创建Topic时也会将Topic与Broker的关系写入到NameServer中。不过,这步是可选的,也可以在发送消息时自动创建Topic。

4)Producer发送消息,启动时先跟NameServer集群中的其中一台建立长连接,并从NameServer中获取路由信息,即当前发送的Topic消息的Queue与Broker的地址(IP+Port)的映射关系。然后根据算法策略从队选择一个Queue,与队列所在的Broker建立长连接从而向Broker发消息。当然,在获取到路由信息后,Producer会首先将路由信息缓存到本地,再每30秒从NameServer更新一次路由信息。

5)Consumer跟Producer类似,跟其中一台NameServer建立长连接,获取其所订阅Topic的路由信息,然后根据算法策略从路由信息中获取到其所要消费的Queue,然后直接跟Broker建立长连接,开始消费其中的消息。Consumer在获取到路由信息后,同样也会每30秒从NameServer更新一次路由信息。不过不同于Producer的是,Consumer还会向Broker发送心跳,以确保Broker的存活状态。


  • Topic的创建模式

手动创建Topic时,有两种模式:

  • 集群模式:该模式下创建的Topic在该集群中,所有Broker中的Queue数量是相同的。(全局定义)

  • Broker模式:该模式下创建的Topic在该集群中,每个Broker中的Queue数量可以不同。

自动创建Topic时,默认采用的是Broker模式,会为每个Broker默认创建4个Queue。


  • 读/写队列

从物理上来讲,读/写队列是同一个队列。所以,不存在读/写队列数据同步问题。读/写队列是逻辑上进行区分的概念。一般情况下,读/写队列数量是相同的。
20edf1c60cb44bf6a46a11058cd86f5e.png

例如,创建Topic时设置的写队列数量为8,读队列数量为4,此时系统会创建8个Queue,分别是0 1 2 3 4 5 6 7。Producer会将消息写入到这8个队列,但Consumer只会消费0 1 2 3这4个队列中的消息,4 5 6 7中的消息是不会被消费到的。

再如,创建Topic时设置的写队列数量为4,读队列数量为8,此时系统会创建8个Queue,分别是0 1 2 3 4 5 6 7。Producer会将消息写入到0 1 2 3 这4个队列,但Consumer只会消费0 1 2 3 4 5 6 7这8个队列中的消息,但是4 5 6 7中是没有消息的。此时假设Consumer Group中包含两个Consumer,Consumer1消费0 1 2 3,而Consumer2消费4 5 6 7。但实际情况是,Consumer2是没有消息可消费的。也就是说,当读/写队列数量设置不同时,总是有问题的。

那么,为什么要这样设计呢?其这样设计的目的是为了,方便Topic的Queue的缩容

例如,原来创建的Topic中包含16个Queue,如何能够使其Queue缩容为8个,还不会丢失消息?可以动态修改写队列数量为8,读队列数量不变。此时新的消息只能写入到前8个队列,而消费都消费的却是16个队列中的数据。当发现后8个Queue中的消息消费完毕后,就可以再将读队列数量动态设置为8。整个缩容过程,没有丢失任何消息。

缩容过程:先设置小写queue,16到8,那就只写入0-7;此时消费者消费之前的0-15,当后面8个的queue没有消息了,就关闭掉,再将读queue从16设置为8,就完成了缩容
8b37ec1789bf44cb932f647f8a56dd27.png

perm用于设置对当前创建Topic的操作权限:2表示只写,4表示只读,6表示读写


三、单机安装与启动

1 准备工作

  • 软硬件需求
    系统要求是 64 位的,JDK要求是1.8及其以上版本的。

13eb037f52544f058edd2de814330859.png


  • 下载RocketMQ安装包

0011842e932e4977a2f8394fb6578e92.png

将下载的安装包上传到Linux.解压.

unzip rocketmq-all-4.9.0-bin-releases.zip -d /opt/module/rocketmq #解压unzip文件

2 、修改初始内存

644ebf5a0c164e21aee17944a29f1c2e.png

修改runserver.sh
使用vim命令打开bin/runserver.sh文件。现将这些值修改为如下:
分布式消息队列RocketMQ7.png

修改runbroker.sh
使用vim命令打开bin/runbroker.sh文件。现将这些值修改为如下:
分布式消息队列RocketMQ8.png

vim runserver.sh
vim runbroker.sh
# 设置测试环境jvm堆空间内存

3 、启动

  • 启动NameServer
nohuop sh bin/mqnamesrv & #后台运行 nameserver
tail -f ~/logs/rocketmqlogs/namesrv.log #监听nameserver日志文件

分布式消息队列RocketMQ9.png

e366686b58f94221b8a8eab7bcf489c9.png

  • 启动broker
    nohup sh mqbroker -n localhost:9876 &
    tail -f ~/logs/rocketmqlogs/broker.log
    分布式消息队列RocketMQ10.png

0386cd905a7b48558b1dbdc83e6949fe.png

126a81d0e5784fafa7fb1c1ef0f2b149.png


4 、发送/接收消息测试

  • 发送消息
export NAMESRV_ADDR=localhost:9876 #设置环境变量
sh bin/tools.sh org.apache.rocketmq.example.quickstart.Producer
  • 接收消息
sh bin/tools.sh org.apache.rocketmq.example.quickstart.Consumer

5 、关闭Server

无论是关闭name server还是broker,都是使用bin/mqshutdown命令。

[root@s1 rocketmq4.9.0]# sh bin/mqshutdown broker
The mqbroker(1298) is running...
Send shutdown request to mqbroker(1298) OK

[root@s1 rocketmq4.9.0]# sh bin/mqshutdown namesrv
The mqnamesrv(1258) is running...
Send shutdown request to mqnamesrv(1258) OK
[1]+ 退出 143 nohup sh mqbroker -n localhost:9876(工作目录:/opt/module/rocketmq/rocketmq4.9.0/bin)
(当前工作目录:/opt/module/rocketmq/rocketmq4.9.0)


四、 控制台的安装与启动

RocketMQ有一个可视化的dashboard,通过该控制台可以直观的查看到很多数据。

1 下载

下载地址:https://github.com/apache/rocketmq-externals/releases

分布式消息队列RocketMQ11.png


2 修改配置

修改其src/main/resources中的application.properties配置文件。

  • 原来的端口号为8080,修改为一个不常用的
  • 指定RocketMQ的name server地址

分布式消息队列RocketMQ12.png


3 添加依赖

在解压目录rocketmq-console的pom.xml中添加如下JAXB依赖。

JAXB,Java Architechture for Xml Binding,用于XML绑定的Java技术,是一个业界标准,是一
项可以根据XML Schema生成Java类的技术。

<dependency>
<groupId>javax.xml.bind</groupId>
<artifactId>jaxb-api</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>com.sun.xml.bind</groupId>
<artifactId>jaxb-impl</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>com.sun.xml.bind</groupId>
<artifactId>jaxb-core</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>javax.activation</groupId>
<artifactId>activation</artifactId>
<version>1.1.1</version>
</dependency>


4 打包

在rocketmq-console目录下运行maven的打包命令。

保证自己电脑里面运行环境装有maven

mvn clean package -Dmaven.test.skip=true

分布式消息队列RocketMQ13.png

他会在 rocketmq-console/target/ 下生成编译后的jar文件

分布式消息队列RocketMQ14.png

5 启动

java -jar rocketmq-console-ng-1.0.0-sources.jar

分布式消息队列RocketMQ15.png

6 访问

访问我们在上面配置文件制定的地址:localhost:3636

分布式消息队列RocketMQ16.png